
PRACTICAL SOFTWARE™

Bi
naryTree XFCN:
A Free HyperCard Utility
By Ari Halberstadt

ABSTRACT

An external function implementation of a general purpose binary tree data structure
for HyperCard (on the Macintosh). Nodes in a tree are referred to using a key and
each node can contain a datum field. Operations implemented include insert, delete,
find, and tree traversal as well as range searching. Several rules for inserting keys
are implemented, including exact, ignorecase, and numeric. Source code in C is
included. The program is free; for distribution terms see the appropriate sections in
the file “Common Manual”.

This manual is intended for people who write scripts for HyperCard and who have
some understanding of binary trees.

Copyright © 1990 Ari I. Halberstadt

Please see the more complete copyright notice in the file “Common Manual”, and
the sections on distribution in the same file, for details on how to freely distribute
this manual and the software it describes.

This copyright notice must be preserved on all copies of this file. If any changes are
made to this manual you must record them in the section containing the revision
history.

Contents

Sections

Introduction

Using BinaryTree
Nodes in a tree

Key field
Datum field
Indexes

Attributes
Unique
Compare

Traversing a tree

Function descriptions
Functions

"!"
"?"
Delete
Dispose
Error
Get
GetAttribute
Height
Inorder
Insert
Left
Levelorder
New
Parent
Postorder
Preorder
Range
Right
Root
Set
SetAttribute

Limitations and bugs
Limitations
Known bugs

Version information
Changes from earlier versions
Future plans

About the program

Appendix A. Functions (by operation)

Appendix B. Function quick reference

Ap

pendix C. Resources used

Appendix D. Revision history

Figures
Figure 1. Elements of a tree
Figure 2. An ordered binary tree
Figure 3. Father William Keys
Figure 4. Father William Data
Figure 5. Father William Indexes

Tables
Table 1. Attributes
Table 2. BinaryTree limits
Table 3. Function quick reference
Table 4. Resources
Table 5. Revision history

Scripts
Script 1. MakeExampleTree
Script 2. SetCompare

Introduction

Binary trees

The BinaryTree external function implements ordered binary trees, along with the
basic operations needed to manipulate them. The simplest way to explain a binary
tree is with a diagram:

Figure 1. Elements of a tree

A binary tree contains nodes, and each node—which can be thought of as a parent of
other nodes—has two edges leaving it: one goes to its left child, and the other goes
to its right child. A node may have only one child or no children at all. A node that
has no children is called a leaf. Each node may be assigned a value, which is then
used to locate the node and to position it in the tree. An ordered binary tree has the
property that the value of the left child is smaller than the value of the node, and the
value of the right child is greater than (or equal to) the value of the node. (The
BinaryTree external function places items with the same value into the right child.)
The following figure shows an ordered binary tree, with letters indicating the values
of the nodes (the tree was created by inserting the letters "PEACE" into an initially
empty tree):

Figure 2. An ordered binary tree

Uses

Binary trees are excellent for maintaining data that change frequently. It is possible
to insert a new node and to delete an existing node in an average time of O(lgN). It
is also possible to traverse a tree, ie, visit all the nodes in a tree, in several different
ways. For instance, recursively visiting the left child, then the node itself, and then
the right child, is called in-order traversal (we stop when we reach a leaf). If a tree is
traversed in in-order, and the values of the nodes printed as they are visited, then the
output will be in sorted order.

There are many other things that can be done with binary trees. For more
information, you can read almost any introductory data structures and algorithms
text; I recommend the text by Robert Sedgewick, “Algorithms”, 2nd ed., Addison-
Wesley (1988).

Using BinaryTree

Naming

Trees are always referred to by a name, which may be any valid HyperTalk string
cosisting of letters, digits, and underscores. Capitalization does not matter in a name;
thus, "TREE" is considered the same as "tree". Nodes in a tree are referred to by the
node's key, which may be any HyperCard string. Each node may also contain a
datum field which contains any HyperCard string; the datum field is empty by
default.

Creating

Before a tree is used it must be created using the New function. The tree will then
continue to exist until it is explicitly disposed of using the Dispose function.
BinaryTree maintains a single internal index to all trees created by it, which means
that all trees are globally accessible throughout your scripts.

Syntax

All functions implemented on a tree are executed from a single external function
[XFCN]. When calling BinaryTree, the basic syntax is

btree(function[, parameters])

The first parameter always selects the function to perform on the tree, and
subsequent parameters vary with each function.

Result

HyperCard expects an XFCN to return a value, and the calling script is required to
put this return value somewhere. Since all of the operations in this program are part
of a single XFCN, the script must always do something with the result returned,
even if nothing useful is returned. It's simplest to use HyperTalk's get keyword,
which will place the result into the temporary variable it. For instance,
get btree(new, tree) -- create a new tree
if (it ≠ empty) then return it -- return error code
-- continue with script

Efficiency

The delay between the time an XFCN is called and the time it starts to execute can
be quite noticeable, especially when many calls are made to the XFCN. BinaryTree
provides several means by which the number of individual calls may be reduced.
Specifically, it allows for a condensed form of passing or getting many parameters
from a single function. For instance, to retrieve the datum field from a single node of
a tree, the following statement could be used:

get btree(get, tree, key) -- get datum for node with given key

whereas to retrieve the data fields of several nodes the following statement is more
efficient:

get btree(get, tree, "key1,key2,key3")

The result in the latter statement will be separated by commas, though a different
separator can be requested.

Nodes in a tree

This section discusses the various fields associated with a node. Each node has a key
field and a datum field: the key field is used for locating and inserting nodes in the
tree, while the datum field may store any additional information. Also, each node
has a unique index assigned to it.

Sample tree

The illustrations in this section show several versions of the same tree, which was
created using the following script, with text from the poem “Father William” by
Lewis Carroll:

Script 1. MakeExampleTree
on makeExampleTree tree

-- setup keys
put "You are old Father William the young man said And your

hair has become very white And yet you incessantly stand on your
head Do you think at your age it is right" into keys

-- setup data
put "In my youth Father William replied to his son I feared it

might injure the brain But now that I'm perfectly sure I have none
Why I do it again and again" into data

-- create a new tree
get btree(new, tree)
-- insert keys and data; each key and datum is separated
-- with a space.
get btree(insert, tree, keys, data, space)

end makeExampleTree

The separator character was set to space so that the input would be broken into
words. All punctuation was removed so that it wouldn't get inserted into the tree.

Key field

The key field is used for inserting new nodes and determines the structure of the
tree. The key field is also the only way to refer to a specific node. The key field is
set when a new node is inserted into the tree, and it may not be changed thereafter.
The only way to get rid of a key is by deleting its node using the Delete function.

Specifying a key

When a function calls for a key parameter, you must provide the complete text of the
key, though there may be a range of strings which can match the key, depending on
the value of the compare attribute. For instance, if the value of the tree's
compare attribute is exact, then to refer to the key "How are you!", you must
enter the entire string "How are you!", exactly as shown. If the compare attribute
was instead Ignorecase, then you could enter "HOW are YOU!", "how ARE
you!', etc. (You must still include the punctuation.)

Keys illustrated

The following figure contains the keys from the example tree. Notice that upper and
lower case letters have been inserted into the tree correctly, since the tree was
created using the default value of the compare attribute (Ignorecase). Also,
remember the basic property of ordered binary trees: all left children are smaller
than the root, and all right children are greater than or equal to the root.

Figure 3. Father William Keys

Duplicates

Observe how duplicate keys were inserted, such as "You" and "you". When
searching for a node (using any of the commands that refer to a node by its key),
only the first occurrence encountered of a node matching that key is ever seen. Thus,
if you used a command such as:

get btree(get, tree, "you")

you would always get the datum at the root of the tree, which is "In". To get all
occurrences of the word "you", use the Range search command:

get btree(range, tree, "you", "you")

which will return "You,you,you".

Traversing a tree

Since the search normally terminates at the first occurrence of a key, it is not
possible to traverse a tree containing duplicate keys using the Left and Right
commands. For instance, consider what would happen to the following recursive
script to traverse our “Father William” tree:
on traverse tree, node

if (node ≠ empty) then
traverse tree, btree(right, tree, node)
traverse tree, btree(left, tree, node)

end if
end traverse

the traverse handler is called with the command

traverse tree, btree(root, tree)

First, traverse will call itself with node equal to "young", then it will call itself
with node equal to the first "your", and then again it will call itself with node equal
to the first "your". This function will thus encounter an infinite loop and will be
abnormally terminated by HyperCard. The first few steps taken by this function are
shown with the arrows in the figure.

Solution

The above example raises an important problem: how is it possible to traverse a
tree? The solution is to avoid recursion in HyperTalk by having BinaryTree traverse
the tree for us. Since a tree may be represented as an array, we use level order
traversal (or whatever order is appropriate) to get the indexes into this array. We then
do another traversal using the same order to get the keys or data fields of the tree. A
repeat loop can then scan through the array and execute the desired operations. An
example of several scripts implementing this method may be found in the
DrawTree card of the demonstration stack.

Datum field

The datum field may be filled with any string the user wants to put into it, and is
empty by default. Each datum field is permanently associated with the node to
which it belongs. You may change the contents of a datum field at any time using the
Set function, and get its value using the Get function.

The next figure shows the datum fields for our example tree. Notice that the data do
not follow the rules that the keys in the tree follow: the data are positioned in the
tree only according to the order in which the Insert command encountered them, so
that each datum corresponds to a specific key. Also notice that the trees in this figure
and the previous figure have the same shape, since they are both depicitons of
different information taken from the same tree.

Figure 4. Father William Data

Indexes

A node's index is an integer which is implicitly associated with the node according
to its position in the tree. Therefore, any operation that changes the structure of the
tree, such as deletion of a node, may change the index associated with any specific
key.

Calculating indexes

The index of the root of a tree is always 1, the left child of a node with index i has
index 2*i and the right child has index 2*i+1. The parent of the node has index i
div 2, while the depth of the node is trunc(log2(i)). If you specify a different
root node to any of the tree traversal functions or to the range searching function
then that node is assigned index number 1, instead of the actual root of the tree.

The following figure shows the indexes into the example tree. The root of the tree
has index 1, its left child index 2 and its right child index 3. The indexes continue
sequentially until we skip index 12, which would have been the left child of the node
with index 6 (since 2*6=12).

Figure 5. Father William Indexes

Attributes

Every tree has some attributes used to modify the way the tree behaves, add extra
functionality to a tree, and make some operations more efficient. The functions
SetAttribute and GetAttribute are used to set and get the attributes' values.
Attributes may have different types, such as Boolean or integer. Every attribute also
has a default value that is set when a tree is created. Following is a table giving the
names, types, and default values for all of the attributes. Following the table are
descriptions of each of the attributes.

Table 1. Attributes

Name Value Default

Sorted True False
False

Compare Exact Ignorecase
Ignorecase
International
Numeric

Unique

Only unique instances of each key are allowed. When inserting a key into a

tree, a check is made to see if the key already exists. If it does, then the key is not
inserted and an error code is returned. Duplicate keys in a tree can interfere with
some operations; see the discussion of keys for more details.

Compare

The compare attribute controls the rules for comparing items when searching for a
key and when inserting keys into a tree. The value of this attribute is set when a tree
is created using the New function, and can not be changed thereafter. Since a tree
can be output in sorted order when traversed in in-order, these key comparison rules
may be viewed as modifying the sorting rules for a tree. Descriptions of each of the
possible values are given below.

Exact

Keys are compared exactly as they are, and strict ASCII ordering is used when
inserting items. For instance, the following items are in sorted order: "Aardvark,
Hello, ^[\, me, them, you". These ordering rules are obviously not suitable for a tree
containing text.

Ignorecase

Upper and lower case letters are correctly compared and inserted. When searching
for a key, distinctions between upper and lower case letters are ignored, so that
"UPPER" is considered the same as "upper". When inserting, upper case letters are
considered smaller than lower case letters. When the tree is output in sorted order,
letters will all be grouped together, but upper case letters will come before lower
case letters. For instance, the following items are in sorted order: "aardvark, UPPER,
Upper, upper". Character case is not ignored for letters with diacritics, so that "å" is
not the same as "Å", even though "a" would be the same as "A".

International

Correctly compares and inserts non-English text containing diacritical marks and
special characters, depending on the international resources in your System file. This
is similar to the international style of HyperCard's sort command.

Numeric

Compares and inserts keys numerically. Any white spaces preceding the keys are
ignored (eg, spaces, tabs, returns). The comparison is first done on the numeric
component of the keys, and then, if the keys are equal, a sub-comparison is done on
any non-numeric characters following the keys. For instance, the key “4a” is smaller
than the key “4b”. The capitalization of any extra characters is ignored, so that the
string “5B” would match the string “5b”.

Traversing a tree

Traversing a tree means visiting every node in the tree in some specific order. As
each node is visited, we can perform some action, such as printing its contents. For
instance, one method of traversing a tree is to recursively visit the left subtree, then
the right subtree, and then the root node. This method is called in-order traversal.

Algorithms

BinaryTree provides all the basic algorithms for tree traversal: in-order, pre-order,
post-order, and level-order. These functions, by default, start at the root of the tree
and return a comma separated list of the keys of the nodes encountered. It is also
possible to request the data or the indexes of the nodes encountered, to specify a
different output separator, and to start from a node other than the root node. These
functions should be sufficient for nearly all tree traversal problems. If you must
traverse the tree using a different algorithm, you can use the Left, Right, Root, and
Parent functions to access nodes.

Note: If a tree contains duplicate keys then the Left, Right, and Parent functions
can not be used to traverse the tree. This problem is discussed in the section above
about keys.

Function descriptions

Functions

This section contains an alphabetical list of all of the functions implemented.

"!"

Syntax

string btree("!")
Description

Returns a string giving the version of BinaryTree, the full name of the program, the
author, a copyright notice, and the date and time of compilation. The string has the
basic form “BinaryTree XFCN, Version 0.9, by Ari Halberstadt, Copyright © 1990,
date time”.

Examples

get btree("!")

"?"

Syntax

string btree("?")
Description

Returns a string giving a brief summary of the functions and call syntax for
BinaryTree.

Examples

get btree("?")

Delete

Syntax

error btree(Delete, tree, key[, separator])
Description

Deletes the node with the given the key from the tree. If the separator character

is given then each key delimited by the separator character is deleted from the tree.

Notes

Each key must exist in the tree.

Examples

get btree(delete, tree, key)
-- deletes a single key

get btree(delete, tree, "key1,key2,key3", ",")
-- deletes keys "key1", "key2", and "key3"

Dispose

Syntax

error btree(Dispose, tree)
Description

Completely disposes of all of the nodes in the tree and of the tree itself. Call this
function where you are completely finished with a tree.

Examples

get btree(dispose, tree)

Error

Syntax

error btree(Error)
Description

Returns the error code set by the last function executed. If the last function was
executed successfully then returns empty.

Examples

get btree(error)

Get

Syntax

string btree(Get, tree, key[, keys_separator[, data_separator]])
Description

Returns the datum field for the node with the given key. If the keys_separator
character is given then Get is called for every key delimited by the separator. The
output items are separated by keys_separator, unless data_separator is
given, in which case the output items are separated by the data separator.

Examples

get btree(get, tree, key)
-- gets the datum field of the node with the given key.

get btree(get, tree, "key1,key2,key3", ",")
-- gets the data fields for the nodes whose keys are
-- "key1", "key2", and "key3". The data are separated
-- by commas, for instance: "datum1,datum2,datum3".

get btree(get, tree, "key1,key2,key3", ",", ";")
-- gets the data fields for the nodes whose keys are
-- "key1", "key2", and "key3". The data are separated
-- by semicolons, for instance: "datum1;datum2;datum3".

GetAttribute

Syntax

string btree(GetAttribute, tree, attribute)
Description

Returns the value of the named attribute. See descriptions of attributes for more
details.

Notes

The type of the returned value depends on the type of the attribute.

Examples

get btree(getattribute, tree, unique)
-- returns true or false

get btree(getattribute, tree, compare)
-- might return "exact", "ignorecase", etc.

Height

Syntax

integer btree(Height, tree[, root_key])
Description

Returns the height of the tree. If the root_key parameter is given then returns the
height of the tree whose root is the node with the given key.

Examples

get btree(height, tree)
get btree(height, tree, some_key)

Inorder

Syntax

string btree(Inorder, tree, [type, [separator, [root_key]]])
Description

Traverses the tree in in-order and returns the keys of the nodes encountered. The
type parameter specifies the type of the items to collect, and may be any one of
"Keys", "Data", or "Indexes"; the default is "Keys". Each output item is by default
separated with a comma, unless the separator character is given, in which case
output is separated with the separator. The root_key specifies the key of the node
from which to start traversing the tree; by default traversal starts at the root of the
tree.

Notes

In-order traversal of the tree's keys results in sorted output.

Examples

get btree(inorder, tree)
-- Traversal starts from the root of the tree. The
-- keys encountered are returned, and are separated
-- with commas. For instance, "key1,key2,key3".

get btree(inorder, tree, keys)
-- This is the same as the previous example.

get btree(inorder, tree, data, ";")
-- Traversal starts from the root of the tree. The
-- data fields of the nodes encountered are returned,
-- and the data are separated with semicolons. For
-- instance, "datum1;datum2;datum3".

get btree(inorder, tree, indexes, ";")
-- Traversal starts from the root of the tree. The
-- indexes of the nodes encountered are returned,
-- and they are separated with semicolons. For
-- instance, "1;2;3".

get btree(inorder, tree, keys, ",", start_key)
-- Traversal starts from the node with start_key.
-- The keys of the nodes encountered are returned,
-- and they are separated with commas. For
-- instance, "key1,key2,key3".

Insert

Syntax

error btree(Insert, tree, key[, datum, [keys_separator[,
data_separator]])

Description

Inserts a node with the given key and optional datum into the tree. If the
keys_separator parameter is given then Insert is called repeatedly for each key
and datum pair delimited by the keys separator. If the data_separator is also
given then the data are delimited by the data separator, while the keys are still
delimited by the keys separator. If there are fewer data then keys then the data fields
of the nodes belonging to the extra keys are empty.

Notes

If the unique attribute is true and one of the keys already exists then an error code
is returned.

Examples

get btree(insert, tree, key)
-- Inserts a node with the given key into the tree.
-- The datum field of the node is empty.

get btree(insert, tree, key, datum)
-- Inserts a node with the given key into the tree.
-- The datum field of the node is set to the given
-- datum.

get btree(insert, tree, "key1,key2,key3", "datum1,datum2,datum3",
",")

-- Inserts nodes with keys "key1", "key2", and "key3" into
-- the tree. The data fields of these nodes are assigned the
-- corresponding data: "datum1", "datum2", and "datum3".

get btree(insert, tree, "key1:key2:key3", "datum1;datum2;datum3",
":", ";")

-- Inserts nodes with keys "key1", "key2", and "key3" into
-- the tree. The data fields of these nodes are assigned the
-- corresponding data: "datum1", "datum2", and "datum3".

Left

Syntax

string btree(Left, tree, key)
Description

Returns the key of the left child of the node with the given key, or empty if the
node is a leaf.

Examples

get btree(left, tree, key)

Levelorder

Syntax

string btree(Levelorder, tree[, type[, separator[, root_key]]])
Description

Same as the Inorder function except that nodes are visited in level-order.

New

Syntax

error btree(New, tree[, compare])
Description

Creates a new tree with the name given in the tree parameter. This function must be
called before a tree can be used. The compare parameter specifies the rules used
for comparing the keys in the tree; see the description of the compare attribute for

more details. When you have completely finished using a tree, you can use the
Dispose function to release the memory used by the tree.

Examples

get btree(new, tree)
get btree(new, tree, ignorecase)
get btree(new, tree, numeric)

Parent

Syntax

string btree(Parent, tree, key)
Description

Returns the key of the parent of the node with the given key, or empty if the node is
the root of the tree.

Examples

get btree(parent, tree, key)

Postorder

Syntax

error btree(Postorder, tree, [type, [separator, [root_key]]])
Description

Same as the Inorder function except that nodes are visited in post-order.

Preorder

Syntax

error btree(Preorder, tree, [type, [separator, [root_key]]])
Description

Same as the Inorder function except that nodes are visited in pre-order.

Range

Syntax

string btree(Range, tree, low_key, high_key[, type[, separator[,
root_key]]])

Description

Executes an in-order range search for nodes with keys between the givenlow_key
and high_key, and returns the keys of the nodes encountered.The type parameter
specifies the type of the items to collect, and may be any one of "Keys", "Data", or
"Indexes"; the default is "Keys". Each output item is by default separated with a

comma, unless the separator character is given, in which case output is separated
with the separator. The root_key specifies the key of the node from which to start
traversing the tree; by default traversal starts at the root of the tree.

Examples

get btree(range, tree, goodbye, hello)
-- Returns a comma separated list of all of the keys
-- whose values fall between the strings "goodbye"
-- and "hello".

get btree(range, tree, first, last, data)
-- Returns a comma separated list of all of the data
-- fields of all of the keys whose values fall between
-- the strings "first" and "last".

get btree(range, tree, 1, 10, keys, ";")
-- Returns a semicolon separated list of all of the keys
-- whose values fall between the strings "1"
-- and "10".

get btree(range, tree, aardvark, zyzzyva, indexes, ";")
-- Returns a semicolon separated list of all of the
-- indexes of the keys whose values fall between the
-- strings "1" and "10".

get btree(range, tree, me, you, keys, ",", root_key)
-- Starting from the node whose key is root_key,
-- returns a comma separated list of the keys whose
-- values fall between the strings "me" and "you".

Right

Syntax

string btree(Right, tree, key)
Description

Returns the key of the right child of the node with the given key, or empty if the
node is a leaf.

Examples

get btree(right, tree, key)

Root

Syntax

string btree(Root, tree)
Description

Returns the key of the root of node of the tree, or empty if the tree is empty.

Examples

get btree(root, tree)

Set

Syntax

error btree(Set, tree, key, datum[, keys_separator[,
data_separator]])

Description

Sets the value of the datum field of the node with the given key to the given
datum. If the keys_separator parameter is given then Set is called on all sets
of keys and data delimited by the separator. If the data_separator is given then
the data are delimited by the data separator instead of by the keys separator. Every
key in the list must already exist in the tree.

Examples

get btree(set, tree, key, datum)
-- Sets the datum field of the node with the given key.

get btree(set, tree, "key1,key2,key3", "datum1,datum2,datum3",",")
-- Sets the data field of the node with "key1" to "datum1",
-- sets the data field of the node with "key2" to "datum2",
-- and sets the data field of the node with "key3" to
-- "datum3".

get btree(set, tree, "key1,key2,key3", "datum1;datum2;datum3",",",
";")

-- Sets the data field of the node with "key1" to "datum1",
-- sets the data field of the node with "key2" to "datum2",
-- and sets the data field of the node with "key3" to
-- "datum3".

SetAttribute

Syntax

error btree(SetAttribute, tree, attribute, value)
Description

Sets the value of the named attribute. See descriptions of attributes for more
details.

Notes

It is not possible to change the compare attribute once a tree is created. To change
this attribute's value the tree must be completely rebuilt. The following script will
accomplish this:

Script 2. SetCompare
function setCompare tree, value, separator

-- save keys and data
put btree(preorder, tree, false, separator) into keys
if (btree(error)) then return btree(error)
put btree(preorder, tree, true, separator) into data
if (btree(error)) then return btree(error)
-- dispose and then recreate tree with
-- new compare attribute value
get btree(dispose, tree)
if (it ≠ empty) then return it
get btree(new, tree, value)
if (it ≠ empty) then return it
-- insert keys and data
get btree(insert, tree, keys, data, separator)
return it

end setCompare
Examples

get btree(setattribute, tree, unique, false)
-- Sets the value of the unique attribute to false.

Limitations and bugs

This section describes any limitations on the size and number of data that the
program may manipulate. Also discussed are any known bugs, with suggested ways
to work around them.

Limitations

This section lists various minimum and maximum sizes for trees. All limits may be
smaller depending on the availability of memory and other computer resources. It is
unlikely BinaryTree will actually encounter an error associated with the exhaustion
of available memory since HyperCard is more likely to quit first.

In the following table, the value represented by Integer is 32,767 and the value
represented by LongInt is 2,147,483,647.

Table 2. BinaryTree limits

Item Limit

Number of trees LongInt
Nodes in a tree LongInt
Length of a key LongInt
Length of a datum LongInt

Known bugs

This section is included for updates on possible and real bugs, and for the
dissemination of temporary solutions. Pseudo-bugs will also be reported here (a
pseudo-bug is defined as “weird behavior deriving from the correct definition of the
software”).

• In trees with duplicate keys, only the first node encountered when searching for
a key is ever returned. In the future I may support referring to a node using its
index, in addition to the current method of referring to a node by key. This is
only a psuedo-bug.

Version information

This section describes features that have changed from previous versions. Also
discussed are plans for the future of this program.

Changes from earlier versions

There have been no earlier versions.

Future plans

Self organizing tree

I intend to implement a version of a self organizing tree, such as a splay tree. The
tree could have an automatic mode, in which the tree reorganizes itself if it becomes
very unbalanced and the rest of the time behaves like a simple tree. Another option
would be to reorganize the tree after every insertion or deletion.

About the program

«SECTION NOT YET AVAILABLE»

Appendix A. Functions (by operation)

This section lists the functions implemented according to the operations they
perform.

Getting information
string btree("!")
string btree("?")
Getting errors
error btree(Error)
Creating and disposing of trees
error btree(New, tree)
error btree(Dispose, tree)
Inserting and deleting nodes
error btree(Insert, tree, key[, datum[, keys_separator[, data_separator]]])
error btree(Delete, tree, key[, separator])
Setting and getting data
error btree(Set, tree, key, datum[, keys_separator[, data_separator]])
string btree(Get, tree, key[, keys_separator[, data_separator]])
Accessing nodes
string btree(Left, tree, key)
string btree(Right, tree, key)
string btree(Parent, tree, key)
string btree(Root, tree)
Range searching
string btree(Range, tree, low, high[, type[, separator[, root_key]]])
Traversing
string btree(Inorder, tree[, type[, separator[, root_key]]])
string btree(Preorder, tree[, type[, separator[, root_key]]])
string btree(Postorder, tree[, type[, separator[, root_key]]])
string btree(Levelorder, tree[, type[, separator[, root_key]]])
Getting height of trees
integer btree(Height, tree[, root_key])
Setting and getting attributes
error btree(SetAttribute, tree, attribute, value)
string btree(GetAttribute, tree, attribute)

Appendix B. Function quick reference

The following table is an alphabetic list of all of the functions implemented, the
types of data they return, and their syntax.

Table 3. Function quick reference

Returns Syntax

string btree("!")
string btree("?")
error btree(Delete, tree, key[, separator])
error btree(Dispose, tree)
error btree(Error)
string btree(Get, tree, key[, keys_separator[, data_separator]])
string btree(GetAttribute, tree, attribute)
integer btree(Height, tree[, root_key])
string btree(Inorder, tree[, type[, separator[, root_key]]])
error btree(Insert, tree, key[, datum[, keys_separator[, data_separator]]])
string btree(Left, tree, key)
string btree(Levelorder, tree[, type[, separator[, root_key]]])
error btree(New, tree)
string btree(Parent, tree, key)
string btree(Postorder, tree[, type[, separator[, root_key]]])
string btree(Preorder, tree[, type[, separator[, root_key]]])
string btree(Range, tree, low, high[, type[, separator[, root_key]]])
string btree(Right, tree, key)
string btree(Root, tree)
error btree(Set, tree, key, datum[, keys_separator[, data_separator]])
error btree(SetAttribute, tree, attribute, value)

Appendix C. Resources used

This appendix gives a complete list of resources needed by this program. These
resources must be installed in your stack for the program to work (see the section on
installation in the common manual).

The following table lists the resources with their default IDs and names, along with
a short description of the data contained in each resource and how the resource is
used by the program. The resource of type TABL is described in the common
manual.

Table 4. Resources

Type Name Description

XFCN btree The XFCN whose purpose it is
to load, lock, and call the PROC resource.

PROC BinaryTree The resource containing the
executable code.

STR# BinaryTree:ResourceMap Map of resources
used by BinaryTree.

STR# BinaryTree:Info Version and usage
information.

TABL BinaryTree:Functions Names of the functions.
TABL BinaryTree:Attributes Names of the attributes.
TABL BinaryTree:Compares Names of the

comparison attributes.
TABL BinaryTree:Outputs Names of output types

passed to tree traversal functions (eg, "keys",
"indexes", "data").

Appendix D. Revision history

This section is to be used for recording any changes made to this manual. This is
necessary since I do not want inconsistencies or mistakes introduced by others to
reflect on my reputation, and, if the revisions improve this product, then the person
who made the improvements should receive full credit. For consistency, please enter
dates as Year-Month-Day.

Table 5. Revision history

Date Name Comments

90-07-18 Ari Halberstadt This is an example entry
90-07-11 Ari Halberstadt Version 0.9

